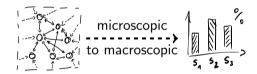
Bias and Refinement of Multiscale Mean Field Models

Sebastian Allmeier¹ Nicolas Gast¹

¹Inria Grenoble - Rhône-Alpes; Univ. Grenoble Alpes

Classical Mean Field Setting

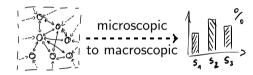
<u>Applications</u> Load Balancing, Epidemics, Chemical Reactions, Networks Analysis, ...



 $\frac{\text{Goal}}{\text{Derive Deterministic Approximation}}$ $\dot{x} = f(x)$

Classical Mean Field Setting

Applications Load Balancing, Epidemics, Chemical Reactions, Networks Analysis, ...



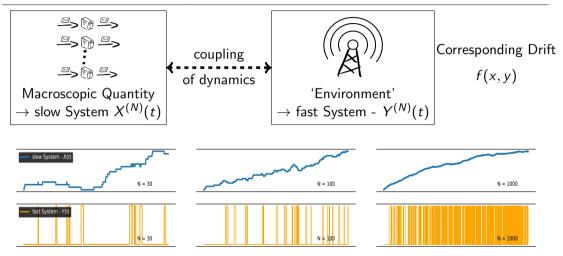
<u>Goal</u> Derive Deterministic Approximation $\dot{x} = f(x)$ Works if particles are homogeneous & self-contained (no interaction with environment).

Justified by (asymptotic) object independence.

Bias Correction

Can be made more accurate using refinements which take dependencies into account. [Gast, Van Houdt]

Two Timescale Systems



We Study Generic Coupled Two Timescale Models

Finite set \mathcal{T} of transitions:

 $(\boldsymbol{X}^{(N)}(t), \boldsymbol{Y}^{(N)}(t))$ jumps to $(\boldsymbol{X}^{(N)}(t) + \ell/N, \boldsymbol{Y}')$ at rate $N imes lpha_{\ell, \boldsymbol{y}'}(\boldsymbol{X}^{(N)}(t), \boldsymbol{Y}^{(N)}(t)).$

Two Timescale Drift

$$\mathcal{F}(oldsymbol{x},oldsymbol{y}) := \sum_{\ell,oldsymbol{y}'\in\mathcal{T}} lpha_{\ell,oldsymbol{y}'}(oldsymbol{x},oldsymbol{y})\ell\in\mathbb{R}^{d_{ imes}}$$

We Study Generic Coupled Two Timescale Models

Finite set \mathcal{T} of transitions:

 $(\boldsymbol{X}^{(N)}(t), \boldsymbol{Y}^{(N)}(t))$ jumps to $(\boldsymbol{X}^{(N)}(t) + \ell/N, \boldsymbol{Y}')$ at rate $N imes lpha_{\ell, \boldsymbol{y}'}(\boldsymbol{X}^{(N)}(t), \boldsymbol{Y}^{(N)}(t)).$

Two Timescale Drift

$$\mathcal{F}(oldsymbol{x},oldsymbol{y}) := \sum_{\ell,oldsymbol{y}'\in\mathcal{T}} lpha_{\ell,oldsymbol{y}'}(oldsymbol{x},oldsymbol{y})\ell\in\mathbb{R}^{d_{ imes}}$$

Common Mean Field Intuition: Use drift as dynamics for the ODE.

Problem - not well defined due to
$$\mathbf{y} \rightarrow \dot{\mathbf{x}} \stackrel{?}{=} F(\mathbf{x}, \mathbf{y})$$

Decoupling and Averaging

Decoupled 'Fast' Dynamics

Define $K(\mathbf{x})$ as a transition kernel of the fast process for fixed $\mathbf{X} = \mathbf{x}$ by

$$\mathcal{K}_{\mathbf{y},\mathbf{y}'}(\mathbf{x}) = \sum_{\ell} lpha_{\ell,\mathbf{y}'}(\mathbf{x},\mathbf{y}).$$

Assume $K(\mathbf{x})$ has a unique stationary distribution ('unichain') $\pi(\mathbf{x}) = (\pi_{\mathbf{y}}(\mathbf{x}))_{\mathbf{y} \in \mathcal{Y}}$.

Decoupling and Averaging

Decoupled 'Fast' Dynamics

Define $K(\mathbf{x})$ as a transition kernel of the fast process for fixed $\mathbf{X} = \mathbf{x}$ by

$$\mathcal{K}_{\mathbf{y},\mathbf{y}'}(\mathbf{x}) = \sum_{\ell} lpha_{\ell,\mathbf{y}'}(\mathbf{x},\mathbf{y}).$$

Assume $K(\mathbf{x})$ has a unique stationary distribution ('unichain') $\pi(\mathbf{x}) = (\pi_{\mathbf{y}}(\mathbf{x}))_{\mathbf{y} \in \mathcal{Y}}$.

'Average' Drift
$$ar{F}(\mathbf{x}) := \sum_{\mathbf{y}} \pi_{\mathbf{y}}(\mathbf{x}) F(\mathbf{x}, \mathbf{y})$$

'Average' Mean Field Dynamics

 $\dot{\boldsymbol{x}} = \bar{F}(\boldsymbol{x}).$

Assumptions

(A₁) Finite set of transitions \mathcal{T} and for all $\ell, \mathbf{y}' \in \mathcal{T}$ rates $\alpha_{\ell,\mathbf{y}'}$ are twice cont. differentiable with Lipschitz derivatives.

(A₂) $K(\mathbf{x})$ has a unique irreducible class for all $\mathbf{x} \in \mathcal{X}$. \rightarrow has unique stationary distribution $\pi(\mathbf{x})$ ('unichain')

Assumptions

(A₁) Finite set of transitions \mathcal{T} and for all $\ell, \mathbf{y}' \in \mathcal{T}$ rates $\alpha_{\ell,\mathbf{y}'}$ are twice cont. differentiable with Lipschitz derivatives.

(A₂) $K(\mathbf{x})$ has a unique irreducible class for all $\mathbf{x} \in \mathcal{X}$. \rightarrow has unique stationary distribution $\pi(\mathbf{x})$ ('unichain')

Additional Steady-State Assumptions

 (A_3) The stochastic system has a stationary distribution denoted by $(m{X}_{\infty}^{(N)},m{Y}_{\infty}^{(N)})$

(A₄) The ODE equilibrium point $\boldsymbol{x}(\infty)$ is unique and exponentially stable.

Results

Theorem (Steady-State)

Assume $(A_1) - (A_4)$. For all $h \in D^2(\mathcal{X})$ there exists a constant C_h such that:

$$\mathbb{E}[h(\boldsymbol{X}_{\infty}^{(N)})] = \underbrace{h(\boldsymbol{x}(\infty))}_{\text{'Average' Mean Field}} + C_h \frac{1}{N} + o(1/N)$$

Results

Theorem (Steady-State)

Assume $(A_1) - (A_4)$. For all $h \in D^2(\mathcal{X})$ there exists a constant C_h such that:

$$\mathbb{E}[h(\boldsymbol{X}_{\infty}^{(N)})] = \underbrace{h(\boldsymbol{x}(\infty))}_{'Average' Mean Field} + \underbrace{C_h \frac{1}{N}}_{Bias} + o(1/N)$$

Results

Theorem (Steady-State)

Assume $(A_1) - (A_4)$. For all $h \in D^2(\mathcal{X})$ there exists a constant C_h such that:

$$\mathbb{E}[h(\boldsymbol{X}_{\infty}^{(N)})] = \underbrace{h(\boldsymbol{x}(\infty))}_{'Average' Mean Field} + \underbrace{C_h \frac{1}{N}}_{Bias} + o(1/N)$$

- similar result for transient regime
- holds for $h \in \mathcal{D}(\mathcal{X} imes \mathcal{Y})$ and its averaged version too
- bias term can be computed

Refined 'Average' Mean Field

$$C_{h} = \sum_{i} \frac{\partial h}{\partial x_{i}}(\boldsymbol{x}(\infty)) \left(V_{i} + T_{i} + S_{i}\right) + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} h}{\partial x_{i} x_{j}}(\boldsymbol{x}(\infty)) \left(W_{i,j} + U_{i,j}\right) - \text{ 'new' terms}$$

$$C_{h} = \sum_{i} \frac{\partial h}{\partial x_{i}}(\boldsymbol{x}(\infty)) \left(V_{i} + T_{i} + S_{i}\right) + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} h}{\partial x_{i} x_{j}}(\boldsymbol{x}(\infty)) \left(W_{i,j} + U_{i,j}\right) - \text{ 'new' terms}$$

Correction Terms V, W

- closely related to [Gast, Van Houdt] 'classical' refinement terms
- error of the decoupled slow system to 'average' mean field
- *New* Correction Terms S, T, U
 - error of decoupling of the slow system & error of 'averaging' assumption
 - involved computations due to looping over 'fast' components states

Terms are solutions to linear equations.

 $x(\infty) + \frac{C_h}{N}$ – Refined 'Average' Mean Field

Proof Ideas

- generator comparison of stochastic and deterministic process
- use two Poisson equations to characterize
 - $\circ\,$ the difference of the stochastic drift and its average version

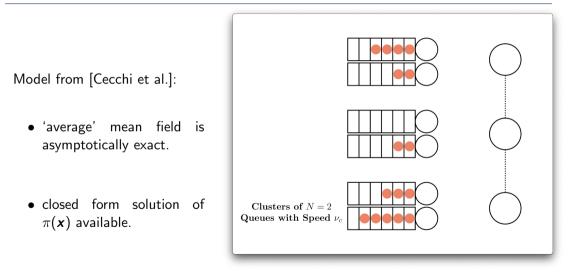
$$L_{\mathsf{fast}}G_{\mathsf{F}}({m{x}},{m{y}})={m{F}}({m{x}},{m{y}})-ar{m{F}}({m{x}})$$

 \circ the fluctuation of the decoupled stochastic system around $\pmb{x}(\infty)$

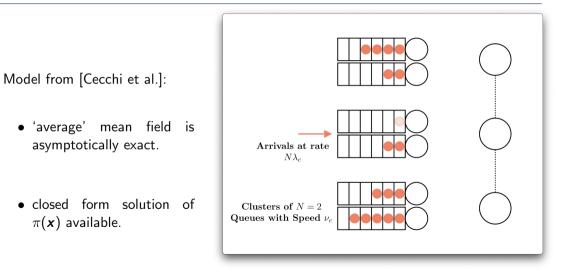
$$\Lambda G_h(\boldsymbol{x}) = h(\boldsymbol{x}) - h(\boldsymbol{x}(\infty))$$

• use equations to obtain **derivative bounds** and deduce **computable bias expressions**

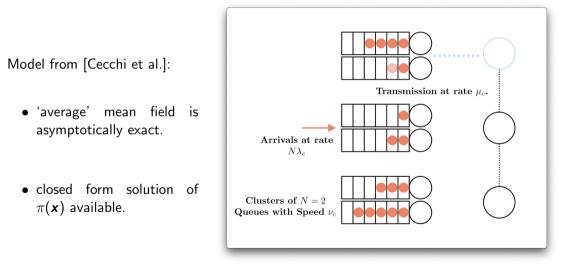
Example - Random Access Network w. Interference



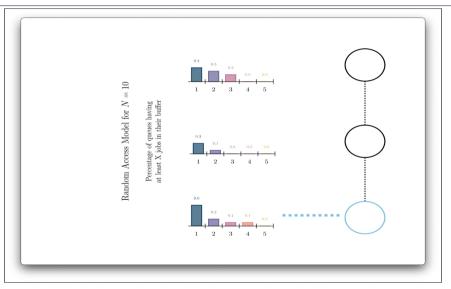
Example - Random Access Network w. Interference



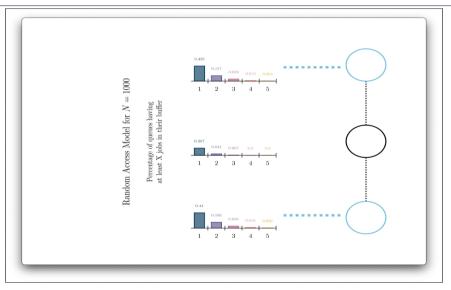
Example - Random Access Network w. Interference



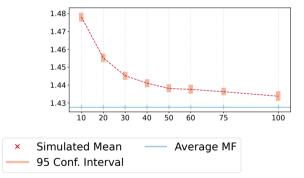
CSMA Linear 3 Node Model - Video Illustration



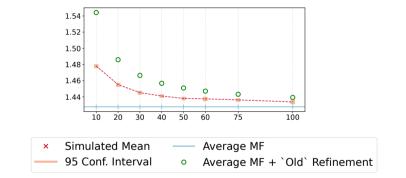
CSMA Linear 3 Node Model - Video Illustration



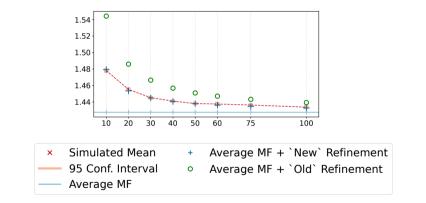
Numerical Results - Steady-State



Numerical Results - Steady-State



Numerical Results - Steady-State



Takeaways

The 'average' mean field technique

- * can be applied to two timescale model with increasing accuracy of order O(1/N) in transient regime and steady-state
- * can be refined in steady-state new expansion terms
- * expansion terms can be computed efficiently through ODE and linear equations
- * small hidden constants in practice

Takeaways

The 'average' mean field technique

- * can be applied to two timescale model with increasing accuracy of order O(1/N) in transient regime and steady-state
- * can be refined in steady-state new expansion terms
- * expansion terms can be computed efficiently through ODE and linear equations
- * small hidden constants in practice

Thank you!

Sebastian Allmeier sebastian.allmeier@inria.fr

Bias and Refinement of Multiscale Mean Field Models

References

Sebastian Allmeier and Nicolas Gast

Bias and Refinement of Multiscale Mean Field Models Proc. ACM Meas. Anal. Comput. Syst. 7, 1, Article 23 (March 2023)

Nicolas Gast and Benny Van Houdt 2017

A Refined Mean Field Approximation. Proceedings of the ACM on Measurement and Analysis of Computing Systems 1, 2

Nicolas Gast, Luca Bortolussi, and Mirco Tribastone 2019

Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis. Performance Evaluation 129 (Feb. 2019)

Sebastian Allmeier and Nicolas Gast 2021

Mean Field and Refined Mean Field Approximations for Heterogeneous Systems: It Works! Proc. ACM Meas. Anal. Comput. Syst., 6(1), (Feb 2022)

1

1

í.

Sebastian Allmeier and Nicolas Gast 2021

rmf_tool - a library to compute (refined) mean field approximation(s). SIGMETRICS Perform. Eval. Rev. (Workshop).

Cecchi, Borst, van Leeuwaarden, Whiting (2021)

Mean-Field Limits for Large-Scale Random-Access Networks