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Classical Mean Field Setting

Applications
Load Balancing, Epidemics,
Chemical Reactions, Networks
Analysis, ...

microscopic

to macroscopic

Goal
Derive Deterministic Approximation

ẋ = f (x)

Works if particles are
homogeneous & self-contained (no
interaction with environment).

Justified by (asymptotic) object
independence.

Bias Correction
Can be made more accurate using
refinements which take dependencies
into account. [Gast, Van Houdt]
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Two Timescale Systems

Macroscopic Quantity
→ slow System X (N)(t)

‘Environment’
→ fast System - Y (N)(t)

coupling

of dynamics

Corresponding Drift

f (x , y)

N = 30

slow System - X(t)

N = 100 N = 1000

N = 30

fast System - Y(t)

N = 100 N = 1000
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We Study Generic Coupled Two Timescale Models

Finite set T of transitions:

(X (N)(t),Y (N)(t)) jumps to (X (N)(t) + ℓ/N,Y ′) at rate N × αℓ,y ′(X (N)(t),Y (N)(t)).

Two Timescale Drift F (x , y) :=
∑

ℓ,y ′∈T
αℓ,y ′(x , y)ℓ ∈ Rdx

Common Mean Field Intuition: Use drift as dynamics for the ODE.

Problem - not well defined due to y → ẋ ?
= F (x , y)
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Decoupling and Averaging

Decoupled ‘Fast’ Dynamics

Define K (x) as a transition kernel of the fast process for fixed X = x by

Ky ,y ′(x) =
∑
ℓ

αℓ,y ′(x , y).

Assume K (x) has a unique stationary distribution (‘unichain’) π(x) = (πy (x))y∈Y .

‘Average’ Drift F̄ (x) :=
∑
y

πy (x)F (x , y)

‘Average’ Mean Field Dynamics ẋ = F̄ (x).
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Assumptions

(A1) Finite set of transitions T and for all ℓ, y ′ ∈ T
rates αℓ,y ′ are twice cont. differentiable with Lipschitz derivatives.

(A2) K (x) has a unique irreducible class for all x ∈ X .
→ has unique stationary distribution π(x) (‘unichain’)

Additional Steady-State Assumptions

(A3) The stochastic system has a stationary distribution denoted by (X (N)
∞ ,Y (N)

∞ )

(A4) The ODE equilibrium point x(∞) is unique and exponentially stable.
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Results

Theorem (Steady-State)

Assume (A1)− (A4). For all h ∈ D2(X ) there exists a constant Ch such that:

E[h(X (N)
∞ )] = h(x(∞))︸ ︷︷ ︸

‘Average’ Mean Field

+ Ch
1

N
+ o(1/N)

• similar result for transient regime

• holds for h ∈ D(X × Y) and its averaged version too

• bias term can be computed
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Refined ‘Average’ Mean Field

Ch =
∑
i

∂h

∂xi
(x(∞)) (Vi + Ti + Si ) +

1

2

∑
i ,j

∂2h

∂xixj
(x(∞))

(
Wi ,j + Ui ,j

)
- ‘new’ terms

Correction Terms V ,W

• closely related to [Gast, Van Houdt] ‘classical’ refinement terms

• error of the decoupled slow system to ‘average’ mean field

∗New∗ Correction Terms S ,T ,U

• error of decoupling of the slow system & error of ’averaging’ assumption

• involved computations due to looping over ‘fast’ components states

Terms are solutions to linear equations.
x(∞) + Ch

N
– Refined ‘Average’ Mean Field
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Proof Ideas

• generator comparison of stochastic and deterministic process

• use two Poisson equations to characterize

◦ the difference of the stochastic drift and its average version

LfastGF (x , y) = F (x , y)− F̄ (x)

◦ the fluctuation of the decoupled stochastic system around x(∞)

ΛGh(x) = h(x)− h(x(∞))

• use equations to obtain derivative bounds and deduce computable bias
expressions

S. Allmeier - Bias and Refinement of Multiscale Mean Field Models 9 / 14



Example - Random Access Network w. Interference

Model from [Cecchi et al.]:

• ‘average’ mean field is
asymptotically exact.

• closed form solution of
π(x) available.
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CSMA Linear 3 Node Model - Video Illustration


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Numerical Results - Steady-State
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Takeaways

The ‘average’ mean field technique

∗ can be applied to two timescale model with increasing accuracy of order O(1/N) in
transient regime and steady-state

∗ can be refined in steady-state new expansion terms

∗ expansion terms can be computed efficiently through ODE and linear equations

∗ small hidden constants in practice

Thank you!

Sebastian Allmeier
sebastian.allmeier@inria.fr

Bias and Refinement of Multiscale Mean Field Models
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